Selasa, 02 April 2013

Saya Muhammad Jivan Rizqullah 

1.MATEMATIKA

Kesebangunan Dan Kongruensi
Pada bab ini, kamu akan diajak untuk memahami kesebangunan bangun datar dan penggunaannya dalam pemecahan masalah dengan cara mengidentifikasi bangun-bangun datar yang sebangun dan kongruen, mengidentifikasi sifat-sifat dua segitiga sebangun dan kongruen, serta menggunakan konsep kesebangunan segitiga dalam pemecahan masalah.

Dua bangun dikatakan sebangun jika
a. panjang sisi-sisi yang bersesuaian dari kedua bangun tersebut memiliki perbandingan senilai
b. sudut-sudut yang bersesuaian dari kedua bangun tersebut sama besar.
2. Bangun-bangun yang memiliki bentuk dan ukuran yang sama dikatakan bangun-bangun yang kongruen.
3. Syarat dua segitiga sebangun adalah sisi-sisi yang bersesuaian sebanding atau sudut-sudut yang bersesuaian sama besar.
4. Syarat dua segitiga kongruen:
a. Sisi-sisi yang bersesuaian sama panjang (s.s.s)
b. Dua sisi yang bersesuaian sama panjang dan sudut yang diapitnya sama besar (s.sd.s)
c. Dua sudut yang bersesuaian sama besar dan sisi yang berada di antaranya sama panjang (sd.s.sd)
d. Dua sudut yang bersesuaian sama besar dan sisi yang berada di hadapannya sama panjang (sd.sd.s).


STATISKA
Statistika adalah cabang dari matematika terapan yang mempunyai cara-cara, maksudnya mengkaji/membahas, mengumpulkan, dan menyusun data, mengolah dan menganalisis data, serta menyajikan data dalam bentuk kurva atau diagram, menarik kesimpulan, menafsirkan parameter, dan menguji hipotesa yang didasarkan pada hasil pengolahan data. Contoh: statistik jumlah lulusan siswa SMA dari tahun ke tahun, statistik jumlah kendaraan yang melewati suatu jalan, statistik perdagangan antara negara-negara di Asia, dan sebagainya.
1. Menyajikan Data Dalam Bentuk Tabel Distribusi Frekuensi 
2. Menghitung Ukuran Pemusatan, Letak, dan Penyebaran Data  

PEMBAGIAN ALJABAR
Kalian telah mempelajari penjumlahan, pengurangan, pembagian dan perpangkatan pada bentuk aljabar. Sekarang kalian akan mempelajari pembagian pada bentuk aljabar.
Telah kalian pelajari bahwa jika suatu bilangan a dapat diubah menjadi a = p x q dengan a, p, q bilangan bulat maka p dan q disebut faktor-faktor dari a. Hal tersebut berlaku pula pada bentuk aljabar.

Perhatikan uraian berikut:

Pada bentuk aljabar di atas, 2, x2, y, dan z2 adalah faktor-faktor dari 2x2yz2, sedangkan x3, y2, dan z adalah faktor-faktor dari bentuk aljabar x3y2z. Faktor sekutu (faktor yang sama) dari 2x2yz2 dan x3y2z adalah x2, y, dan z, sehingga diperoleh

Berdasarkan uraian di atas dapat kita simpulkan bahwa jika dua bentuk aljabar memiliki faktor sekutu yang sama maka hasil bagi kedua bentuk aljabar tersebut dapat ditulis dalam bentuk yang lebih sederhana. Dengan demikian, pada operasi pembagian bentuk aljabar kalian harus menentukan terlebih dahulu faktor sekutu kedua bentuk aljabar tersebut, kemudian baru dilakukan pembagian.
  

PEMFAKTORAN ALJABAR
Di kelas VII kalian telah mempelajari materi mengenai KPK dan FPB. Pada materi tersebut kalian telah mempelajari cara menentukan kelipatan dan faktor dari suatu bilangan. Coba ingat kembali cara menentukan faktor dari suatu bilangan. Ingat kembali bahwa faktorisasi prima dari suatu bilangan adalah perkalian faktor-faktor prima dari bilangan tersebut. Di bagian depan telah kalian pelajari bahwa sifat distributif a(x + y) dapat dinyatakan sebagai berikut: ax + ay = a(x + y)

Dari bentuk di atas, tampak bahwa bentuk penjumlahan dapat dinyatakan sebagai bentuk perkalian jika suku-suku dalam bentuk penjumlahan tersebut memiliki faktor yang sama. Dari bentuk ax + ay = a(x + y), a dan (x + y) merupakan faktor-faktor dari ax + ay. Proses menyatakan bentuk penjumlahan menjadi suatu bentuk perkalian faktor-faktornya disebut pemfaktoran atau faktorisasi.

Pemfaktoran atau faktorisasi bentuk aljabar adalah menyatakan bentuk penjumlahan menjadi suatu bentuk perkalian dari bentuk aljabar tersebut. Sekarang, kalian akan mempelajari faktorisasi dari beberapa bentuk aljabar. Perhatikan uraian berikut:
1. Bentuk ax + ay + az + ... dan ax + bx – cx
Bentuk aljabar yang terdiri atas dua suku atau lebih dan memiliki faktor sekutu dapat difaktorkan dengan menggunakan sifat distributif.
ax + ay + az + ... = a(x + y + z + ...)
ax + bx – cx = x(a + b – c)
2. Bentuk Selisih Dua Kuadrat x2 – y2
Bentuk aljabar yang terdiri atas dua suku dan merupakan selisih dua kuadrat.
Dengan demikian, bentuk selisih dua kuadrat x2 – y2 dapat dinyatakan sebagai berikut:
x2 - y2= (x + y).(x - y)
3. Bentuk x2 + 2xy + y2 dan x2 – 2xy + y2
Untuk memfaktorkan bentuk aljabar x2 + 2xy + y2 dan x2 – 2xy + y2 perhatikan uraian berikut:
x2 + 2xy + y2 = (x + y) (x + y) = (x + y)2
x2 – 2xy + y2 = (x – y) (x – y) = (x – y)2
4. Bentuk ax2 + bx + c dengan a = 1
Langkah-langkah memfaktorkan bentuk aljabar x2 + bx + c dengan c positif sebagai berikut:
– Pecah c menjadi perkalian faktor-faktornya.
– Tentukan pasangan bilangan yang berjumlah b.
Contoh:
(x + 2) (x + 3) = x2 + 3x + 2x + 6 = x2 + 5x + 6 ........... (dihasilkan suku tiga)
Sebaliknya, bentuk suku tiga x2 + 5x + 6 apabila difaktorkan menjadi x2 + 5x + 6 = (x + 2) (x + 3). Perhatikan bahwa bentuk aljabar x2 + 5x + 6 memenuhi bentuk x2 + bx + c.

Berdasarkan pengerjaan di atas, ternyata untuk memfaktorkan bentuk x2 + bx + c dilakukan dengan cara mencari dua bilangan real yang hasil kalinya sama dengan c dan jumlahnya sama dengan b. Misalkan x2 + bx + c sama dengan (x + m) (x + n).
x2 + bx + c = (x + m) (x + n) = x2 + mx + nx + mn = x2 + (m + n)x + mn


PERSAMAAN GARIS DAN GRADIEN
Persamaan garis lurus dapat ditulis dalam bentuk y = mx + c dengan m dan c suatu konstanta. Persamaan garis yang melalui titik (0, c) dan sejajar garis y = mx adalah y = mx + c. Langkah-langkah menggambar grafik persamaan y = mx atau y = mx + c sebagai berikut:
– Tentukan dua titik yang memenuhi persamaan garis tersebut dengan membuat tabel untuk mencari koordinatnya.
– Gambar dua titik tersebut pada bidang koordinat Cartesius.
– Hubungkan dua titik tersebut, sehingga membentuk garis lurus yang merupakan grafik persamaan yang dicari.

Gradien suatu garis adalah bilangan yang menyatakan kecondongan suatu garis yang merupakan perbandingan antara komponen y dan komponen x. Garis dengan persamaan y = mx memiliki gradien m dan melalui titik (0, 0). Garis dengan persamaan y = mx + c memiliki gradien m dan melalui titik (0, c). Garis dengan persamaan ax + by + c = 0 memiliki gradien (-a/b).

Gradien garis yang melalui titik (x1, y1) dan (x2, y2) adalah (y2-y1)/(x2-x1). Gradien garis yang sejajar sumbu X adalah nol. Gradien garis yang sejajar sumbu Y tidak didefinisikan. Garis-garis yang sejajar memiliki gradien yang sama. Hasil kali gradien dua garis yang saling tegak lurus adalah –1.

Persamaan garis yang melalui titik (x1, y1) dan bergradien m adalah y – y1 = m(x – x1). Persamaan garis yang melalui titik (x1, y1) dan sejajar garis y = mx + c adalah y – y1 = m(x – x1). Persamaan garis yang melalui titik (x1, y1) dan tegak lurus garis y = mx + c adalah y – y1 = (-1/m)(x – x1).

Persamaan garis yang melalui dua titik dapat diselesaikan dengan substitusi ke fungsi linear y = ax + b. Persamaan garis yang melalui titik A(x1, y1) dan B(x2, y2)
adalah (y-y1)/(y2-y1)=(x-x1)/(x2-x1).


2.FISIKA 


1. Listrik Statis
Petir adalah suatu kejadian alam yang luar biasa, karena dalam setiap kejadiannya energi yang dilepaskan lebih besar daripada yang dihasilkan oleh seluruh pusat pembangkit tenaga listrik di Amerika. Cahaya yang dikeluarkan oleh petir lebih terang daripada cahaya 10 juta bola lampu pijar berdaya 100 watt. Hal lain yang menakjubkan bahwa molekul-molekul nitrogen, yang sangat penting untuk tumbuhan, muncul dari kekuatan ini.

Mengapa petir dapat membebaskan energi? Darimana petir mendapatkan energi listrik?

Berapa biaya listrik yang dapat kita hemat jika kita dapat mengumpulkan energi dari petir?

Saat kita merenungi semua perihal petir ini, kita dapat memahami bahwa peristiwa alam ini adalah sesuatu yang menakjubkan. Bagaimana sebuah kekuatan luar biasa semacam itu muncul dari partikel bermuatan positif (proton) dan negatif (elektron) dari dalam sebuah atom, yang tak terlihat oleh mata telanjang. Perbedaan jumlah proton dan elektron dalam sebuah atom mengakibatkan atom bermuatan listrik. Karena semua benda tersusun oleh atom-atom, maka perubahan muatan listrik pada atom akan mengakibatkan perubahan listrik pada benda.

Setiap benda memiliki kecenderungan untuk berada dalam keadaan netral, oleh karena itu jika benda bermuatan maka secara spontan dapat membebaskan muatannya. Salah satu contohnya adalah petir. Sifat-sifat muatan listrik antara lain: 1) listrik terdiri dari dua jenis muatan yaitu muatan positif dan negatif, 2)muatan listrik akan saling berinteraksi, muatan sejenis tolak menolak dan muatan tidak sejenis tarik-menarik. Para ahli berusaha memanfaatkan muatan listrik statis untuk berbagai keperluan dalam kehidupan sehari-hari.

Bagaimana Benda dapat Bermuatan Listrik?
Setiap zat tersusun atas atom-atom, dengan demikian muatan listrik suatu zat tergantung dari jenis muatan listrik atom-atomnya. Jika atom-atom benda lebih cenderung melepaskaan elektron, maka zat yang disusunnya lebih cenderung bermuatan positif. Sebaliknya jika atom-atom benda lebih cenderung menangkap elektron, maka zat yang disusunnya cenderung bermuatan negatif. Dengan demikian muatan listrik sebuah benda sangat tergantung dengan muatan listrik atom-atom penyusunnya.

Bagaimana cara membuat benda bermuatan listrik?

Suatu benda dapat dimuati listrik dengan dua cara yaitu:

1. Menggosok

a. Menggosok penggaris plastik dengan kain wool --> Penggaris menjadi bermuatan listrik jenis negatif.
b. Menggosok kaca dengan kain sutera --> Kaca menjadi bermuatan listrik jenis positif.

Mengapa dengan menggosokkan benda ke benda lain dapat membuat benda bermuatan listrik? Apakah semua benda jika digosokkan akan bermuatan listrik?

Muatan listrik pada sebuah benda, sangat dipengaruhi olah muatan listrik atom-atom penyusunnya. Ada atom-atom yang cenderung melepas elektron, tetapi ada juga atom-atom yang cenderung mengikat elektron. Jika dua benda tersusun dari atom-atom yang memiliki perbedaan sifat tersebut saling digosokkan maka, maka interaksi itu akan lebih mudah membuat benda bermuatan listrik.

Dari animasi di atas. Jika kain sutera digosokkan pada kaca, maka elektron-elektron kaca akan berpindah menuju sutera, sehingga kaca menjadi bermuataan positif. sementara itu kain sutera menjadi bermuatan negatif karena mendapat tambahan elektron.

Jika kain wool digosokkan pada plastik, maka elektron-elektron kain wool akan berpindah menuju plastik, sehingga plastik menjadi bermuataan negatif. sementara itu kain wool menjadi bermuatan positif karena kehilangan elektron-elektronnya.

2. Induksi

Bagaimana proses pemuatan listrik dengan induksi?

Induksi dapat dilakukan dengan cara mendekatkan benda yang bermuatan listrik ke benda netral. Akibatnya benda netral akan terpolarisasi. Jika benda netral yang telah terpolarisasi di hubungkan dengan tanah (di ground kan), maka elektron-elektronnya akan mengalir menuju tanah. Setelah penghantar yang menuju tanah di hilangkan dan benda bermuatan listrik dijauhkan, maka benda netral akan menjadi kekurangan elektron (bermuatan positif). Induksi dalam jumlah muatan tertentu dapat mengakibatkan muatan listrik melompati gap (jarak pemisah), dalam hal ini dapat menimbulkan lintasan bunga api. Salah satu peristiwa yang besar adalah terjadinya petir.

Sifat Muatan Listrik --> Muatan listrik dapat menarik benda-benda kecil

Potongan kertas kecil-kecil dapat menempel pada penggaris yang bermuatan listrik karena adanya gaya listrik. Jika gaya listrik lebih besar dari gaya gravitasi benda maka benda akan menempel pada penggaris, sebaliknya jika gaya listrik kurang dari gaya gravitasi, maka benda tidak akan menempel.

Interaksi antara dua muatan listrik baik berupa gaya tolak atau gaya tarik dapat digambarkan dengan menggunakan garis-garis gaya listrik berikut:

2. Besaran Dan Satuan
Kegiatan yang berhubungan dengan pengukuran sering kita temukan dalam kehidupan sehari-hari, misalnya di pasar. Sebagai contoh, pedagang sembako dan sayur menimbang massa barang sembako dan sayur untuk dijual secara eceran, pedagang kain mengukur panjang dan lebar kain dengan meteran kain, serta pembeli sepulang dari pasar melihat jamnya untuk memperkirakan waktu kedatangan angkutan umum. Massa, panjang, dan waktu termasuk besaran fisika. Karena dalam kehidupan sehari-hari banyak terdapat kegiatan yang berhubungan dengan pengukuran besaran fisika, maka sangatlah penting bagi kalian untuk mempelajari pengukuran tersebut secara baik. Dapatkah kalian melakukan pengukuran secara benar dan teliti? Sudahkah kalian menjaga keselamatan kerja ketika melakukan pengukuran?

Fisika merupakan ilmu pengetahuan yang mempunyai pengaruh besar terhadap perkembangan ilmu pengetahuan yang lainnya, misalnya teknologi elektronika, teknologi informasi, dan teknologi alat ukur. Hal ini disebabkan di dalam fisika mengandung prinsip-prinsip dasar mengenai gejala-gejala alam yang ada di sekitar kita. Fenomena dan gejala-gejala alam tersebut meliputi besaran-besaran fisika di antaranya: gerak, cahaya, kalor, listrik, dan energi.

Penerapan besaran-besaran fisika dalam aktivitas kegiatan sehari-hari senantiasa berkaitan dengan pengamatan dan pengukuran. Sebagai contoh, informasi kecepatan gerak pesawat terbang bagi seorang pilot berguna untuk mengoperasikan pesawat yang dikendalikannya. Besarnya suhu badan kita merupakan informasi untuk mengetahui apakah badan kita sehat atau tidak. Sepatu dan pakaian yang kita gunakan mempunyai ukuran tertentu. Melihat betapa pentingnya pengukuran besaran fisika, maka di dalam bab ini akan dipelajari pengertian besaran fisika, pengukuran besaran fisika yang meliputi massa, panjang, waktu, dan suhu serta konversi satuannya.

Pengertian Besaran Fisika, Besaran Pokok, dan Besaran Turunan
Berapakah tinggi dan berat badanmu? Tentu saja kamu dapat mengukur secara langsung tinggi badanmu dengan alat ukur meteran pita, misalnya 165 cm. Bagaimana dengan berat badanmu? Di dalam pembicaraan kita sehari-hari yang dimaksud dengan berat badan adalah massa, sedangkan dalam fisika pengertian berat dan massa berbeda. Berat badan dapat kita tentukan dengan menggunakan alat timbangan berat badan. Misalnya, setelah ditimbang berat badanmu 50 kg atau dalam fisika bermassa 50 kg. Tinggi atau panjang dan massa adalah sesuatu yang dapat kita ukur dan dapat kita nyatakan dengan angka dan satuan. Panjang dan massa merupakan besaran fisika. Jadi, besaran fisika adalah ukuran fisis suatu benda yang dinyatakan secara kuantitas.

Selain besaran fisika juga terdapat besaran-besaran yang bukan besaran fisika, misalnya perasaan sedih, gembira, dan lelah. Karena perasaan tidak dapat diukur dan tidak dapat dinyatakan dengan angka dan satuan, maka perasaan bukan besaran fisika.

Besaran fisika dikelompokkan menjadi dua, yaitu besaran pokok dan besaran turunan. Besaran pokok adalah besaran yang sudah ditetapkan terlebih dahulu. Adapun, besaran turunan merupakan
besaran yang dijabarkan dari besaran-besaran pokok. Sistem satuan besaran fisika pada prinsipnya bersifat standar atau baku, yaitu bersifat tetap, berlaku universal, dan mudah
digunakan setiap saat dengan tepat. Sistem satuan standar ditetapkan pada tahun 1960 melalui pertemuan para ilmuwan di Sevres, Paris. Sistem satuan yang digunakan dalam dunia pendidikan dan pengetahuan dinamakan sistem metrik, yang dikelompokkan menjadi sistem metrik besar atau MKS (Meter Kilogram Second) yang disebut sistem internasional atau disingkat SI dan sistem metrik kecil atau CGS (Centimeter Gram Second). Besaran pokok beserta dengan satuannya dapat dilihat dalam tabel berikut:
https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEhX3A27hj9gYPjtu7Tvp9-x5O1_PofLJufRFGOvjwJwU1GSPUxr6XM4zJdh2Gbmm8JaAVE9lswlQWKW1lubECyaiWHWH7ar08XyCU3-4eDcuFLpF8AwQctb0QAUp2WJLJkG9D5TQU-L9zNy/s400/besaran+pokok.JPG
Besaran turunan dengan satuannya dapat dilihat dalam tabel berikut:
https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEgMdB1nFt-dG3UOeUUnONN4shqGDk2O_BpShFy7MIK036RDDDR987QyxNQOU2cSMZwoalSiU8Lj440Y66toVkTwCTQE6NEDqHftKkDaDMfsGHEP5oAmQFJv9h34bn3BatfeMUmV_feUl3e2/s400/besaran+turunan.JPG 
3.Usaha Dan Energi
A. Pengertian Energi
Setiap saat manusia memerlukan energi yang sangat besar untuk menjalankan kegiatannya sehari-hari, baik untuk kegiatan jasmani maupun kegiatan rohani. Berpikir, bekerja, belajar, dan bernyanyi memerlukan energi yang besar. Kamu membutuhkan berjuta-juta kalori setiap harinya untuk melakukan kegiatan dalam kehidupan sehari-hari. Oleh karena itu, disarankan setiap pagi sebelum berangkat sekolah, kamu harus makan terlebih dahulu. Dengan demikian, tubuhmu cukup energi untuk melakukan kegiatan di sekolah dan untuk menjaga kesehatanmu.

Ketika kamu sakit dan nafsu makanmu hilang, tubuhmu akan lemas karena energi dalam tubuhmu berkurang. Jika demikian, kegiatan rutin sehari-harimu akan terganggu bahkan kegiatan ibadahmu pun akan terganggu. Menurutmu, apakah energi itu?

Berdasarkan jawabanmu, kemampuan untuk melakukan sesuatu itulah yang disebut energi. Sesuatu itu dikatakan sebagai kerja atau usaha. Jadi, energi adalah kemampuan untuk melakukan kerja atau usaha. Satuan energi dalam Sistem Internasional (SI) adalah joule (J). Satuan energi dalam sistem yang lain adalah kalori, erg, dan kWh (kilo watt hours). Kesetaraan joule dengan kalor adalah sebagai berikut. 1 kalori = 4,2 joule atau 1 joule = 0,24 kalori

B. Bentuk-Bentuk Energi

Energi yang paling besar adalah energi matahari. Tuhan telah menciptakan Matahari khusus untuk kesejahteraan umat manusia. Jarak Matahari ke Bumi yang telah diatur pada jarak 149.600 juta kilometer memungkinkan energi panas yang diterima manusia di Bumi tidak membahayakan. Energi panas dari sinar matahari sangat bermanfaat bagi Bumi dan dapat menghasilkan energi-energi yang lain di muka Bumi ini. Caranya adalah dengan mengubah energi matahari menjadi energi yang lain, seperti energi kimia, energi listrik, energi bunyi, dan energi gerak.

1. Energi Kimia
Energi kimia adalah energi yang tersimpan dalam persenyawaan kimia. Makanan banyak mengandung energi kimia yang sangat bermanfaat bagi tubuh manusia. Energi kimia pun terkandung dalam bahan minyak bumi yang sangat bermanfaat untuk bahan bakar. Baik energi kimia dalam makanan maupun energi kimia dalam minyak bumi berasal dari energi matahari.

Energi cahaya matahari sangat diperlukan untuk proses fotosintesis pada tumbuhan sehingga mengandung energi kimia. Tumbuhan dimakan oleh manusia dan hewan sehingga mereka akan memiliki energi tersebut. Tumbuhan dan hewan yang mati milyaran tahun yang lalu menghasilkan minyak bumi. Energi kimia dalam minyak bumi sangat bermanfaat untuk menggerakkan kendaraan, alat-alat pabrik, ataupun kegiatan memasak.

2. Energi Listrik
Energi listrik merupakan salah satu bentuk energi yang paling banyak digunakan. Energi ini dipindahkan dalam bentuk aliran muatan listrik melalui kawat logam konduktor yang disebut arus listrik. Energi listrik dapat diubah menjadi bentuk energi yang lain seperti energi gerak, energi cahaya, energi panas, atau energi bunyi. Sebaliknya, energi listrik dapat berupa hasil perubahan energi yang lain, misalnya dari energi matahari, energi gerak, energi potensial air, energi kimia gas alam, dan energi uap.

3. Energi Panas
Sumber energi panas yang sangat besar berasal dari Matahari. Sinar matahari dengan panasnya yang tepat dapat membantu manusia dan makhluk hidup lainnya untuk hidup dan berkembang biak. Energi panas pun merupakan hasil perubahan energi yang lain, seperti dari energi listrik, energi gerak, dan energi kimia. Energi panas dimanfaatkan untuk membantu manusia melakukan usaha seperti menyetrika pakaian, memasak, dan mendidihkan air.

4. Energi Mekanik
Ketika kamu memerhatikan sebuah mangga yang bergantung di pohonnya, mungkin kamu mengharapkan buah mangga tersebut jatuh dari pohonnya. Mengapa buah mangga itu dapat jatuh dari pohonnya? Untuk melakukan kerja supaya dapat jatuh dari pohonnya, buah mangga harus memiliki energi. Energi apakah itu? Ketika buah mangga jatuh, dia bergerak ke bawah sampai mencapai tanah. Energi apakah yang terkandung ketika buah mangga bergerak jatuh?

Dari peristiwa tersebut terdapat dua buah jenis energi yang saling memengaruhi, yaitu energi yang diakibatkan oleh ketinggian dan energi karena benda bergerak. Energi akibat perbedaan ketinggian disebut energi potensial gravitasi, sedangkan energi gerak disebut energi kinetik (energi gerak). Energi mekanik merupakan penjumlahan dari energi potensial dan energi kinetik. Secara matematis persamaan energi mekanik dapat dituliskan sebagai berikut.
Em = Ep + Ek dengan:
Em = energi mekanik (J)
Ep = energi potensial (J)
Ek = energi kinetik (J)

a. Energi Potensial

Telah kamu ketahui bahwa energi potensial gravitasi adalah energi akibat perbedaan ketinggian. Apakah energi ini diakibatkan oleh ketinggian saja? Buah kelapa yang bergantung di pohonnya menyimpan suatu energi yang disebut energi potensial. Energi potensial yang dimiliki buah kelapa diakibatkan oleh adanya gaya tarik bumi sehingga jatuhnya selalu menuju ke pusat Bumi.

Energi potensial akibat gravitasi Bumi disebut energi potensial gravitasi. Energi potensial gravitasi pun bisa diakibatkan oleh tarikan benda-benda lain seperti tarikan antarplanet. Adapun energi potensial yang dimiliki suatu benda akibat pegas atau karet yang kamu regangkan disebut energi potensial pegas.

Energi potensial gravitasi dimiliki oleh benda yang berada pada ketinggian tertentu dari permukaan bumi. Energi potensial pegas muncul akibat adanya perbedaan kedudukan dari titik kesetimbangannya. Titik kesetimbangan adalah titik keadaan awal sebelum benda ditarik. Besarnya energi potensial gravitasi sebanding dengan ketinggian (h) dan massa benda (m). Ep h dan Ep m. Selain kedua besaran itu, energi potensial gravitasi dipengaruhi oleh percepatan gravitasi (g) sehingga dapat dibuat persamaan energi potensial gravitasi sebagai berikut.
Ep = mgh dengan:
Ep = energi potensial (J)
m = massa benda (kg)
g = konstanta gravitasi (m/s2)
h = ketinggian (m)

b. Energi Kinetik
Suatu ketika, ada seorang pelaut malang yang terdampar di pulau kecil. Dia berpikir hanya dengan tiga cara dia dapat mencari bantuan. Pertama, dia dapat menerbangkan layang-layang dan berharap ada kapal yang melihat layang-layang tersebut. Kedua, dia menyimpan pesan dalam botol dan membiarkannya mengapung di atas air sampai ada orang yang menemukannya. Ketiga, dia membuat rakit untuk mencoba pergi dari pulau itu.

Gagasan pelaut itu bergantung pada satu jenis energi yang bekerja, yaitu energi akibat gerakan angin yang akan membuat layangan dapat mengapung, botol dapat bergerak dibawa ombak, dan rakit dapat melaju. Sesuatu yang bergerak, misalnya angin dan air, memiliki kemampuan yang dapat digunakan untuk menarik atau mendorong sesuatu.

Energi yang dimiliki oleh benda yang bergerak disebut energi kinetik. Kamu pun memiliki energi kinetik apabila bergerak. Ketika kamu menaiki sepeda dengan laju yang besar, tiba-tiba dihadapanmu terdapat batu besar yang menghalangi jalan. Tanpa ragu-ragu, kamu akan segera mengerem sepedamu. Sesaat badanmu terhentak sampai akhirnya berhenti. Hentakan yang kamu rasakan pada saat mengerem sepedamu itu disebut energi kinetik. Jika kamu mengajak temanmu menaiki sepeda tersebut, tentu kamu akan lebih keras lagi mengerem sepedamu. Oleh karena massa orang yang menaiki sepeda lebih besar dari sebelumnya, dapat diambil kesimpulan bahwa energi kinetik bergantung pada massa benda dan kecepatan benda tersebut. Secara matematis, energi kinetik suatu benda dapat ditulis sebagai berikut: Ek = ½ mv dengan:
Ek = energi kinetik (J)
m = massa (kg)
v = kecepatan (m/s)

C. Perubahan Bentuk-Bentuk Energi
Energi tidak dapat diciptakan dan juga tidak dapat dimusnahkan, tetapi hanya dapat diubah dari satu bentuk ke bentuk yang lain. Pada umumnya, manfaat energi akan terlihat setelah berubah bentuk menjadi energi yang lain. Misalnya, energi listrik akan bermanfaat ketika berubah bentuk menjadi energi cahaya atau panas.

Matahari sebagai sumber energi terbesar yang diciptakan Tuhan telah mengalami beberapa perubahan bentuk energi yang sangat bermanfaat bagi kehidupan umat manusia. Misalnya, energi panas dan energi cahaya matahari menyinari tumbuhan sehingga tumbuhan dapat melakukan fotosintesis. Dengan demikian, tumbuhan memiliki energi kimia. Tumbuhan dimakan manusia atau hewan sehingga manusia atau tumbuhan memiliki energi untuk melakukan usaha.

Energi dapat diubah dari satu bentuk energi ke bentuk energi yang lain. Energi kimia yang terkandung dalam batu baterai dapat mengalirkan muatan listrik jika dihubungkan dengan kabel. Jika aliran listrik tersebut melalui sebuah lampu, lampu akan menyala dan lama kelamaan lampu menjadi panas. Pada peristiwa tersebut, telah terjadi beberapa perubahan energi, antara lain energi kimia, energi listrik, energi cahaya, dan energi panas. Ketika kedua telapak tanganmu digosok-gosokkan, lama-kelamaan telapak tanganmu akan terasa panas. Hal ini menunjukkan bahwa pada telapak tanganmu telah terjadi perubahan energi dari energi gerak menjadi energi panas.

D. Hukum Kekekalan Energi
Berasal dari manakah energi yang kamu gunakan untuk melakukan kegiatan sehari-hari? Berubah menjadi energi apakah yang telah kamu gunakan tersebut? Apakah manusia dapat membuat mesin yang dapat melakukan kerja terus menerus tanpa menggunakan bahan bakar? Pertanyaan-pertanyaan tersebut merupakan beberapa pertanyaan yang berhubungan dengan energi yang mungkin sering kamu tanyakan pada dirimu sendiri.

Coba kamu lemparkan sebuah bola vertikal ke atas dan amati sampai jatuh lagi ke lantai. Ketika bola bergerak ke atas, kecepatan bola semakin lama semakin melambat dan ketinggian bola semakin besar. Pada ketinggian tertentu, bola berhenti sesaat dan kembali lagi ke bawah dengan kecepatan yang semakin besar. Peristiwa tersebut menunjukkan bahwa energi gerak semakin lama semakin kecil sampai menjadi nol ketika berhenti sesaat pada ketinggian tertentu. Ke manakah energi gerak tersebut?

Energi gerak (Ek) tersebut ternyata berubah menjadi energi potensial gravitasi (Ep) sampai akhirnya mencapai maksimum. Begitu pula sebaliknya, energi potensial gravitasi semakin kecil ketika bola tersebut bergerak ke bawah. Adapun energi geraknya semakin besar dan mencapai maksimum ketika sampai di lantai, tetapi energi potensial gravitasinya menjadi nol ketika sampai di lantai. Setelah diam di lantai, semua energi mekanik benda habis. Tahukah kamu, kemana perginya? Apakah yang dapat kamu simpulkan? Adakah energi yang hilang?

Kegiatan tersebut menunjukkan bahwa energi bersifat kekal. Energi tidak dapat diciptakan dan tidak dapat dimusnahkan, tetapi dapat diubah dari satu bentuk energi menjadi bentuk energi yang lain. Pernyataan tersebut dikenal dengan Hukum Kekekalan Energi. Telah kamu ketahui bahwa energi mekanik merupakan penjumlahan dari energi potensial dan energi kinetik: Em = Ep + Ek

Apabila benda selama bergerak naik dan turun hanya dipengaruhi oleh gaya gravitasi, besar energi mekanik selalu tetap. Dengan kata lain, jumlah energi potensial dan energi kinetik selalu tetap. Pernyataan itu disebut Hukum Kekekalan Energi Mekanik.

E. Usaha
Dalam kehidupan sehari-hari, pengertian usaha identik dengan kemampuan untuk meraih sesuatu. Misalnya, usaha untuk bisa naik kelas atau usaha untuk mendapatkan nilai yang besar. Namun, apakah pengertian usaha menurut ilmu Fisika?

Ketika benda didorong ada yang berpindah tempat dan ada pula yang tetap di tempatnya. Ketika kamu mendorong atau menarik suatu benda, berarti kamu telah memberikan gaya pada benda tersebut. Oleh karena itu, usaha sangat dipengaruhi oleh dorongan atau tarikan (gaya). Menurut informasi tersebut, jika setelah didorong benda itu tidak berpindah, gayamu tidak melakukan usaha. Dengan kata lain, usaha juga dipengaruhi oleh perpindahan. Dengan demikian, dapat disimpulkan bahwa usaha dihasilkan oleh gaya yang dikerjakan pada suatu benda sehingga benda itu berpindah tempat.

Bagaimanakah ketika kamu mendorong dinding kelasmu? Apakah dinding berpindah tempat? Walaupun kamu telah sekuat tenaga mendorongnya, tetapi dinding tetap ditempatnya. Oleh sebab itu, menurut Fisika gayamu dikatakan tidak melakukan usaha.

Apabila gaya disimbolkan dengan F dan perpindahan dengan s, secara matematis usaha dituliskan dalam persamaan berikut: W = F s dengan:
W = usaha (J)
F = gaya (N)
s = perpindahan (m)

Usaha memiliki satuan yang sama dengan energi, yaitu joule. Dengan ketentuan bahwa 1 joule sama dengan besar usaha yang dilakukan oleh gaya sebesar 1 N dengan perpindahan 1 m.

Kamu sudah mengetahui usaha yang dilakukan untuk memindahkan sebuah benda ke arah horisontal, tetapi bagaimanakah besarnya usaha yang dilakukan untuk memindahkan sebuah benda ke arah vertikal? Memindahkan benda secara vertikal memerlukan gaya minimal untuk mengatasi gaya gravitasi bumi yang besarnya sama dengan berat suatu benda. Secara matematis gaya tersebut dapat ditulis sebagai berikut: F = m g

Karena perpindahan benda ke arah vertikal sama dengan ketinggian benda (h), usaha yang dilakukan terhadap benda tersebut sebagai berikut.
W = F s
W = m g h dengan:
W = usaha (J)
m = massa (kg)
g = percepatan gravitasi (N/kg)
h = perpindahan atau ketinggian (m)

F. Hubungan antara Usaha dan Energi
Kamu sudah mengetahui bahwa energi adalah kemampuan melakukan usaha. Definisi tersebut menunjukkan bahwa usaha memiliki kaitan yang erat dengan energi.

Ketika gayamu berusaha mendorong mobil sehingga bergerak, berarti telah terjadi perubahan energi dari energi yang dikeluarkan olehmu menjadi energi gerak. Jadi, dapat disimpulkan bahwa ketika gaya melakukan usaha pada sebuah benda maka akan terjadi perubahan energi pada benda tersebut. Usaha yang dilakukan pada sebuah benda yang bergerak horisontal menyebabkan perubahan energi kinetik. Dengan demikian, besarnya usaha sama dengan perubahan energi kinetik benda. Secara matematis ditulis sebagai berikut.
W = Δ Ek
W = Ek2 – Ek1 dengan:
W = usaha (J)
Ek = perubahan energi kinetik (J)
Ek2 = energi kinetik akhir (J)
Ek1 = energi kinetik awal (J)

Ketika kamu mengangkat sebuah balok, kamu akan memberikan gaya dorong terhadap balok. Pada saat ke atas, berlaku:
Wtangan = Ftangan . s = m g h

Saat ke bawah:
Wgravitasi = Fgravitasi . s = –m g h
Usaha yang dilakukan oleh gaya gravitasi bumi (benda yang bergerak vertikal) sama dengan perubahan energi potensial gravitasi. Secara matematis ditulis sebagai berikut.
W = Δ Ep
W = Ep2 – Ep1
W = m g (h2 – h1) dengan:
W = usaha (J)
ΔEp = perubahan energi potensial (J)
Ep1 = energi potensial awal (J)
Ep2 = energi potensial akhir (J)

4.Pesawat Sederhana
Setiap hari kamu pasti selalu melakukan usaha. Ada yang mudah dan ada pula yang sulit. Oleh karena itu, kadang-kadang kamu memerlukan suatu alat sederhana yang dapat membantumu melakukan usaha. Alat itu disebut dengan pesawat sederhana. Misalnya, kamu akan menancapkan paku pada kayu, tentu akan sulit tanpa palu. Begitu pula ketika kamu akan membuka baut, akan kesulitan apabila tanpa bantuan kunci pembukanya. Pesawat sederhana banyak sekali jenisnya dan semuanya dibuat untuk memudahkan kamu melakukan usaha. Prinsip kerja pesawat sederhana dikelompokkan menjadi beberapa bagian, di antaranya tuas, katrol, dan bidang miring. Marilah kita bahas satu persatu.

1. Tuas
Beberapa anak yang sedang bermain jungkat-jungkit. Jungkat-jungkit adalah sejenis pesawat sederhana yang disebut pengungkit atau tuas. Tuas memiliki banyak kegunaan, di antaranya adalah untuk mengangkat atau memindahkan benda yang berat.

Tuas yang digunakan orang untuk memindahkan sebuah batu yang berat. Berat beban yang akan diangkat disebut gaya beban (Fb) dan gaya yang digunakan untuk mengangkat batu atau beban disebut gaya kuasa (Fk). Jarak antara penumpu dan beban disebut lengan
beban (lb) dan jarak antara penumpu dengan kuasa disebut lengan kuasa (lk).

Hubungan antara besaran-besaran tersebut menunjukkan bahwa perkalian gaya kuasa dan lengan kuasa (Fklk) sama dengan gaya beban dikalikan dengan lengan beban (Fblb). Artinya besar usaha yang dilakukan kuasa sama dengan besarnya usaha yang dilakukan beban. Oleh sebab itu, pada tuas berlaku persamaan sebagai berikut:
Fk.lk = Fb.lb dengan:
Fk = gaya kuasa (N)
Fb = gaya beban (N)
lk = lengan kuasa (m)
lb = lengan beban (m)

Keuntungan pada pesawat sederhana disebut Keuntungan Mekanis (KM). Secara umum keuntungan mekanis didefinisikan sebagai perbandingan gaya beban dengan gaya kuasa sehingga keuntungan mekanis pada tuas atau pengungkit bergantung pada panjang masing-masing lengan. Semakin panjang lengan kuasanya, semakin besar keuntungan mekanisnya. Secara matematis keuntungan mekanis ditulis sebagai berikut:
https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEj163-6OjDG_PUxbHfXO04RhBltj8jidZGFTdOOAGs3j8qo2VI-9obvboKkPwPApVLdVwqAedvqPl4jETbCuBpIX8PKA7xOQDMP_vy_gPEeN_oT4-TYXko40dwrMeiflKqvySl9Vcdah_Jh/s400/RUMUS+KM.JPG
Berdasarkan letak titik tumpunya, tuas atau pengungkit diklasifikasikan menjadi tiga golongan, yaitu sebagai berikut:
a. Tuas Golongan Pertama
Titik tumpu berada di antara titik beban dan titik kuasa. Contohnya gunting, tang, pemotong, gunting kuku, dan linggis.
b. Tuas Golongan Kedua
Titik beban berada di antara titik tumpu dan titik kuasa. Contoh tuas jenis ini, di antaranya adalah gerobak beroda satu, pemotong kertas, dan pelubang kertas.
c. Tuas Golongan Ketiga
Titik kuasa berada di antara titik tumpu dan titik beban. Contoh tuas jenis ini adalah lengan, alat pancing, dan sekop.

2. Katrol
Katrol digunakan untuk mengambil air atau mengangkat beban yang berat. Katrol merupakan pesawat sederhana yang dapat memudahkan melakukan usaha. Katrol dibedakan menjadi tiga jenis, yaitu katrol tetap, katrol bergerak, dan katrol berganda.

a. Katrol Tetap
Bagian-bagian katrol tetap diperlihatkan pada gambar berikut:
https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEhC8cIE2IkUNP6T6N8kJxDTYvDrHv5HyMMvWbYIHq4gFvZXa0ay8BaPDE3vE1_bjmn0kr27PrOPA3tgP8-r5kWdq9VwQHzQygauLkXdmDuURxaQKwkNNZ97e_G3paK5N8n6RznVu5hqzrzV/s400/GAMBAR+KATROL+TETAP.JPG
keterangan:
Fb = gaya beban
Fk = gaya kuasa
lb = AO = lengan beban
lk = OB = lengan kuasa

Katrol berfungsi untuk membelokkan gaya sehingga berat beban tetap sama dengan gaya kuasanya tetapi dapat dilakukan dengan mudah. Keuntungan mekanis katrol tetap sama dengan satu. Katrol tetap digunakan untuk menimba air.
Fk.lk = Fb.lb
Oleh karena
lk = lb
Fk = Fb
sehingga keuntungan mekanisnya adalah 1

b. Katrol Tunggal Bergerak
Prinsip katrol tunggal bergerak hampir sama dengan tuas jenis kedua, yaitu titik beban berada di antara titik tumpu dan titik kuasa. Dengan demikian, berlaku persamaan sebagai berikut: lk = 2 lb
Jadi, keuntungan mekanis katrol tunggal bergerak adalah 2

c. Katrol Majemuk atau Katrol Berganda
Manusia selalu berusaha mencari tahu bagaimana caranya agar benda-benda yang relatif besar dan berat dapat diangkat dengan kerja yang dilakukan lebih mudah. Dengan prinsip katrol bergerak, hal tersebut mudah dilakukan. Katrol majemuk merupakan gabungan dari beberapa katrol sehingga kerja yang dilakukan semakin mudah.

Keuntungan mekanis dari katrol majemuk bergantung pada banyaknya tali yang dipergunakan untuk mengangkat beban. Pada Gambar di bawah ini dapat kamu lihat empat tali digunakan untuk mengangkat beban. Jadi, keuntungan mekanisnya sama dengan 4. Jika kamu akan mengangkat beban 100 N, cukup dengan gaya 25 N saja benda sudah terangkat.

3. Bidang Miring
Ketika di pasar, mungkin kamu pernah melihat orang yang sedang menaikkan drum berisi minyak ke atas sebuah truk. Pesawat sederhana apakah yang mereka gunakan? Bidang miring merupakan alat yang sangat efektif untuk memudahkan kerja.

Keuntungan mekanis bidang miring bergantung pada panjang landasan bidang miring dan tingginya. Semakin kecil sudut kemiringan bidang, semakin besar keuntungan mekanisnya atau semakin kecil gaya kuasa yang harus dilakukan. Keuntungan mekanis bidang miring adalah perbandingan panjang (l) dan tinggi bidang miring (h).

Dalam kehidupan sehari-hari, penggunaan bidang miring terdapat pada tangga, lereng gunung, dan jalan di daerah pegunungan. Semakin landai tangga, semakin mudah untuk dilalui. Sama halnya dengan lereng gunung, semakin landai lereng gunung maka semakin mudah untuk menaikinya, walaupun semakin jauh jarak tempuhnya. Jalan-jalan di pegunungan dibuat berkelok-kelok dan sangat panjang. Hal ini dilakukan untuk mendapatkan keuntungan mekanis yang cukup besar agar kendaraan dapat menaikinya dengan mudah.

a. Baji
Baji adalah pesawat sederhana yang prinsip kerjanya sama dengan bidang miring. Baji merupakan dua bidang miring yang disatukan. Baji terbuat dari bahan keras, misalnya besi atau baja. Baji digunakan untuk membelah kayu, membelah batu, atau benda keras lainnya. Semakin tipis bentuk baji, semakin mudah kerja yang dilakukan.

b. Sekrup
Sekrup adalah alat yang digunakan untuk memudahkan kerja. Sekrup merupakan bidang miring yang dililitkan pada sebuah tabung sehingga lilitannya berbentuk spiral. Jarak antara ulir-ulir lilitan sekrup disebut interval sekrup. Untuk membuktikan bahwa sekrup merupakan penerapan bidang miring, kamu bisa mempraktikkan cara berikut. Buatlah bidang miring dengan kertas, lalu gulung kertas tersebut pada sebuah pensil. Bagaimanakah hasilnya?

Pesawat sederhana yang sering kamu jumpai dalam kehidupan sehari-hari yang prinsip kerjanya berdasarkan sekrup adalah dongkrak mobil mekanik, paku ulir, dan baut.

5.Getaran Dan Gelombang
Gejala getaran banyak ditemukan dalam kehidupan sehari-hari. Getaran bandul jam dinding, senar gitar yang dipetik, dan pita suara yang bergetar hingga menimbulkan bunyi, merupakan beberapa contoh benda yang melakukan getaran. Apakah yang dimaksud dengan getaran? Apakah ciri-ciri suatu benda mengalami getaran?

Pada bab ini akan dipelajari pengertian getaran dan ciri-ciri suatu getaran, pengertian gelombang, jenis gelombang, dan besaran yang berkaitan. Setelah mempelajari bab ini, kamu diharapkan mampu memahami konsep getaran dan prinsip dasar teori gelombang untuk selanjutnya mempelajari fenomena bunyi yang erat dalam kehidupan sehari-hari.

A. Pengertian Getaran
Pernahkah kamu melihat jam dinding yang memakai bandul? Jarum jam tersebut bergerak akibat adanya gerak bolak-balik bandul. Gerakan bandul itu disebut getaran. Marilah kita selidiki apa sebenarnya getaran itu.

Jadi, getaran adalah gerak bolak-balik melalui titik setimbang. Satu getaran didefinisikan sebagai satu kali bergetar penuh, yaitu dari titik awal kembali ke titik tersebut. Satu kali getaran adalah ketika benda bergerak dari titik A-B-C-B-A atau dari titik B-C-B-A-B. Bandul tidak pernah melewati lebih dari titik A atau titik C karena titik tersebut merupakan simpangan terjauh.

Simpangan terjauh itu disebut amplitudo. Di titik A atau titik C benda akan berhenti sesaat sebelum kembali bergerak. Contoh amplitudo adalah jarak BA atau jarak BC. Jarak dari titik setimbang pada suatu saat disebut simpangan.

B. Ciri-Ciri Suatu Getaran
Getaran merupakan jenis gerak yang mudah kamu jumpai dalam kehidupan sehari-hari, baik gerak alamiah maupun buatan manusia. Semua getaran memiliki ciri-ciri tertentu. Apa ciri-ciri getaran itu?

Waktu yang dibutuhkan untuk menempuh satu kali getaran disebut periode getar yang dilambangkan dengan (T). Banyaknya getaran dalam satu sekon disebut frekuensi (f). Suatu getaran akan bergerak dengan frekuensi alamiah sendiri. Hubungan frekuensi dan periode secara matematis ditulis sebagai berikut:
https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEjs0GU36jUY-9MvcHFe-TXmqbpQHkyM_UTYIYG9cQ1TlYQCBqr-fKEaKTtT9eMPyPAkApsBPqAUv0nwmLv9RNI5zn2BBRC604tg6yAwOCRf6sBxLoENgiBaXd5srglplY-7uhi8ag9-aIMX/s400/RUMUS+GETARAN.JPG
dengan: T = periode (s)
f = banyaknya getaran per sekon (Hz)

Satuan periode adalah sekon dan satuan frekuensi adalah getaran per sekon atau disebut juga dengan hertz (Hz), untuk menghormati seorang fisikawan Jerman yang berjasa di bidang gelombang, Hendrich Rudolf Hertz. Jadi, satu hertz sama dengan satu getaran per sekon.

C. Pengertian Gelombang
Pernahkah kamu pergi ke pantai? Tentu sangat menyenangkan, bukan? Demikian indahnya ciptaan Tuhan. Di pantai kamu bisa melihat ombak. Ombak tersebut terlihat bergelombang dari tengah menuju pantai dan semakin lama semakin kecil, lalu akhirnya menerpa pesisir pantai. Jadi, apa sebenarnya ombak itu?

Ketika kamu mengikuti upacara pengibaran bendera di sekolahmu, kamu melihat bendera berkibar diterpa angin. Pernahkah kamu memerhatikan bagaimana gerak bendera tersebut? Peristiwa ombak laut ataupun berkibarnya bendera merupakan contoh dari gelombang. Jadi, apa sebenarnya gelombang itu?

Pada saat kamu menggerakkan tali ke atas dan ke bawah, dikatakan bahwa kamu memberikan usikan pada tali. Jika usikan itu dilakukan terus menerus, akan terjadi getaran. Setelah memberi usikan atau getaran, kamu akan melihat ada sesuatu yang merambat pada tali. Sesuatu itu disebut gelombang. Jadi, gelombang adalah getaran yang merambat atau usikan yang merambat.

D. Gelombang Mekanik Memerlukan Medium untuk Merambat
Gelombang merupakan salah satu konsep Fisika yang sangat penting untuk dipelajari karena banyak sekali gejala alam yang menggunakan prinsip gelombang. Sebagai makhluk yang paling pandai, manusia memiliki kewajiban untuk selalu mempelajari gejala alam ciptaan Tuhan untuk mengambil manfaat bagi kehidupan manusia. Kamu dapat berkomunikasi dengan orang lain sebagian besar dengan memanfaatkan gelombang suara atau gelombang bunyi. Kamu dapat mendengarkan radio atau menonton televisi karena adanya gelombang radio.

Berdasarkan medium perambatnya, gelombang dapat dibedakan menjadi dua bagian, yaitu gelombang mekanik dan gelombang elektromagnetik. Gelombang mekanik adalah gelombang yang dalam perambatannya memerlukan medium, misalnya gelombang tali, gelombang air, dan gelombang bunyi. Gelombang elektromagnetik adalah gelombang yang dapat merambat tanpa medium, misalnya gelombang radio, gelombang cahaya, dan gelombang radar. Dari kedua jenis gelombang tersebut, yang akan kamu pelajari adalah gelombang mekanik. Apakah yang dirambatkan oleh gelombang tersebut?

Pada saat kamu menggetarkan tali, gelombang akan merambat pada tali ke arah temanmu, tetapi karet gelang yang diikatkan pada tali tidak ikut merambat bersama gelombang. Jika demikian, bagian-bagian tali tidak ikut merambat bersama gelombang. Jadi apakah yang dirambatkan oleh gelombang? Jika kamu meminta temanmu untuk menggetarkan salah satu ujung tali, kamu akan merasakan sesuatu pada temanmu akibat merambatnya gelombang tersebut. Tentu kamu masih ingat pelajaran pada bab terdahulu bahwa sesuatu yang memiliki kemampuan untuk melakukan usaha disebut energi. Jadi, yang dirambatkan oleh gelombang adalah energi. Berdasarkan arah perambatannya, gelombang mekanik dibedakan menjadi dua jenis, yaitu gelombang transversal
dan gelombang longitudinal.

1. Gelombang Transversal

Pada saat kamu menggetarkan slinki ke arah samping, ternyata arah rambat gelombangnya ke depan, tegak lurus arah rambatnya. Gelombang seperti ini disebut gelombang transversal. Jadi, gelombang transversal adalah gelombang yang arah getarnya tegak lurus terhadap arah rambatannya. Contoh lain dari gelombang transversal adalah gelombang pada permukaan air, dan semua gelombang elektromagnetik, seperti gelombang cahaya, gelombang radio, ataupun gelombang radar.

Sumber getaran untuk gelombang air berada pada tempat batu jatuh sehingga gelombang menyebar ke segala arah. Dari gambar tersebut tampak bahwa semakin jauh dari sumber, gelombang semakin kecil. Hal tersebut disebabkan energi yang dirambatkan semakin berkurang.

2. Gelombang Longitudinal

Gelombang transversal merupakan gelombang yang arah getarnya tegak lurus dengan arah rambatan. Bagaimanakah arah getar pada gelombang longitudinal?

Pada saat kamu mendorong slinki searah dengan panjangnya, gelombang akan merambat ke arah temanmu berbentuk rapatan dan renggangan. Jika kamu perhatikan, arah rambat dan arah getarnya ternyata searah. Gelombang seperti itu disebut gelombang longitudinal. Jadi, gelombang longitudinal adalah gelombang yang arah getarnya sejajar dengan arah rambatannya.

Gelombang bunyi dan gelombang pada gas yang ditempatkan di dalam tabung tertutup merupakan contoh gelombang longitudinal. Pernahkah kamu memompa ban sepeda atau menggunakan alat suntik mainan? Pada saat kamu menggunakan pompa, kamu mendorong atau menekan alat tersebut. Partikel-partikel gas dalam pompa membentuk pola rapatan dan renggangan sehingga mendorong udara keluar.

E. Panjang Gelombang

Kamu sudah mengetahui bahwa pola gelombang transversal berbentuk bukit dan lembah gelombang, sedangkan pola gelombang longitudinal berbentuk rapatan dan renggangan. Panjang satu bukit dan satu lembah atau satu rapatan dan satu renggangan didefinisikan sebagai panjang satu gelombang. Pada pembahasan tentang getaran kamu sudah mengetahui tentang periode getaran.

Besaran tersebut identik dengan periode gelombang. Periode gelombang adalah waktu yang dibutuhkan untuk menempuh satu panjang gelombang. Jadi, satu gelombang dapat didefinisikan sebagai yang ditempuh panjang satu periode. Panjang gelombang dilambangkan dengan lamda. Satuan panjang gelombang dalam SI adalah meter (m). Marilah kita pelajari panjang gelombang transversal dan panjang gelombang longitudinal.

1. Panjang Gelombang Transversal
Jika kamu menggerakkan slinki tegak lurus dengan arah panjangnya, terbentuklah bukit dan lembah gelombang. Pola tersebut adalah pola gelombang transversal. Bukit gelombang adalah lengkungan a-b-c sedangkan lembah gelombang adalah lengkungan c-d-e. Titik b disebut puncak gelombang dan titik d disebut dasar gelombang. Kedua titik ini disebut juga perut gelombang.

Adapun titik a, c, atau e disebut simpul gelombang. Satu panjang gelombang transversal terdiri atas satu bukit dan satu lembah gelombang. Jadi, satu gelombang adalah lengkungan a-b-c-d-e atau b-c-d-e-f. Satu gelombang sama dengan jarak dari a ke e atau jarak b ke f. Amplitudo gelombang adalah jarak b-b’ atau jarak d-d’. Kamu dapat menyebutkan panjang gelombang yang lain, yaitu jarak f-j atau jarak i-m.

2. Panjang Gelombang Longitudinal
Jika kamu menggerakkan slinki searah dengan panjangnya dengan cara mendorong dan menariknya, akan terbentuk pola-pola gelombang. Satu panjang gelombang adalah jarak antara satu rapatan dan satu renggangan atau jarak dari ujung renggangan sampai ke ujung renggangan berikutnya.

F. Cepat Rambat Gelombang

Gelombang yang merambat dari ujung satu ke ujung yang lain memiliki kecepatan tertentu, dengan menempuh jarak tertentu dalam waktu tertentu pula. Dengan demikian, secara matematis, hal itu dituliskan sebagai berikut.

G. Pemantulan Gelombang
Pada saat kamu berteriak di lereng sebuah bukit, kamu akan mendengar suaramu kembali setelah beberapa saat. Hal ini membuktikan bahwa bunyi dapat dipantulkan. Bunyi merupakan salah satu contoh gelombang mekanik.

Berdasarkan uraian sebelumnya dan dari hasil diskusimu, dapat disimpulkan bahwa salah satu sifat gelombang adalah dapat dipantulkan. Dalam kehidupan sehari-hari, kamu sering melihat pemantulan gelombang air kolam oleh dinding kolam, ataupun gelombang ombak laut oleh pinggir pantai. Dapat diterimanya gelombang radio dari stasiun pemancar yang sedemikian jauh juga menunjukkan bahwa gelombang radio dapat dipantulkan atmosfer bumi.

Sebuah gelombang merambat pada tali, jika ujung tali diikat pada suatu penopang, gelombang yang mencapai ujung tetap tersebut memberikan gaya ke atas pada penopang. Penopang memberikan gaya yang sama tetapi berlawanan arah ke bawah pada tali. Gaya ke bawah pada tali inilah yang membangkitkan gelombang pantulan yang terbalik. Ujung yang bebas tidak ditahan oleh sebuh penopang. Gelombang cenderung melampaui batas. Ujung yang melampaui batas memberikan tarikan ke atas pada tali dan inilah yang membangkitan gelombang pantulan yang tidak terbalik.      
                           
                            THANKS YOU;D